LanceDB provides two powerful tools for query analysis and optimization: explain_plan
and analyze_plan
. Let’s take a better look at how they work:
Method | Purpose | Description |
---|---|---|
explain_plan |
Query Analysis | Print the resolved query plan to understand how the query will be executed. Helpful for identifying slow queries or unexpected query results. |
analyze_plan |
Performance Tuning | Execute the query and return a physical execution plan annotated with runtime metrics including execution time, number of rows processed, and I/O stats. Essential for performance tuning and debugging. |
Query Analysis Tools
explain_plan
Reveals the logical query plan before execution, helping you identify potential issues with query structure and index usage. This tool is useful for:
- Verifying query optimization strategies
- Validating index selection
- Understanding query execution order
- Detecting missing indices
analyze_plan
Executes the query and provides detailed runtime metrics, including:
- Operation duration (
_elapsed_compute_
) - Data processing statistics (
_output_rows_
,_bytes_read_
) - Index effectiveness (
_index_comparisons_
,_indices_loaded_
) - Resource utilization (
_iops_
,_requests_
)
Together, these tools offer a comprehensive view of query performance, from planning to execution. Use explain_plan
to verify your query structure and analyze_plan
to measure and optimize actual performance.
Reading the Execution Plan
To demonstrate query performance analysis, we’ll use a table containing 1.2M rows sampled from the Wikipedia dataset . Initially, the table has no indices, allowing us to observe the impact of optimization.
Let’s examine a vector search query that:
- Filters rows where
identifier
is between 0 and 1,000,000 - Returns the top 100 matches
- Projects specific columns:
chunk_index
,title
, andidentifier
# explain_plan
query_explain_plan = (
table.search(query_embed)
.where("identifier > 0 AND identifier < 1000000")
.select(["chunk_index", "title", "identifier"])
.limit(100)
.explain_plan(True)
)
// explain_plan
const explainPlan = await table
.search(queryEmbed)
.where("identifier > 0 AND identifier < 1000000")
.select(["chunk_index", "title", "identifier"])
.limit(100)
.explainPlan(true);
Execution Plan Components
The execution plan reveals the sequence of operations performed to execute your query. Let’s examine each component:
ProjectionExec: expr=[chunk_index@4 as chunk_index, title@5 as title, identifier@1 as identifier, _distance@3 as _distance]
RemoteTake: columns="vector, identifier, _rowid, _distance, chunk_index, title"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=100
FilterExec: _distance@3 IS NOT NULL
SortExec: TopK(fetch=100), expr=[_distance@3 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
FilterExec: identifier@1 > 0 AND identifier@1 < 1000000
LanceScan: uri=***, projection=[vector, identifier], row_id=true, row_addr=false, ordered=false
1. Base Layer (LanceScan)
- Initial data scan loading only specified columns to minimize I/O
- Unordered scan enabling parallel processing
LanceScan:
- projection=[vector, identifier]
- row_id=true, row_addr=false, ordered=false
2. First Filter
- Apply requested filter on
identifier
column - Reduces the number of vectors that need KNN computation
FilterExec: identifier@1 > 0 AND identifier@1 < 1000000
3. Vector Search
- Computes L2 (Euclidean) distances between query vector and all vectors that passed the filter
KNNVectorDistance: metric=l2
4. Results Processing
- Filters out null distance results
- Sorts by distance and takes top 100 results
- Processes in batches of 1024 for optimal memory usage
SortExec: TopK(fetch=100)
- expr=[_distance@3 ASC NULLS LAST]
- preserve_partitioning=[false]
FilterExec: _distance@3 IS NOT NULL
GlobalLimitExec: skip=0, fetch=100
CoalesceBatchesExec: target_batch_size=1024
5. Data Retrieval
RemoteTake
is a key component of Lance’s I/O cache- Handles efficient data retrieval from remote storage locations
- Fetches specific rows and columns needed for the final output
- Optimizes network bandwidth by only retrieving required data
RemoteTake: columns="vector, identifier, _rowid, _distance, chunk_index, title"
6. Final Output
- Returns only requested columns and maintains column ordering
ProjectionExec: expr=[chunk_index@4 as chunk_index, title@5 as title, identifier@1 as identifier, _distance@3 as _distance]
This plan demonstrates a basic search without index optimizations: it performs a full scan and filter before vector search.
Performance Analysis
Let’s use analyze_plan
to run the query and analyze the query performance, which will help us identify potential bottlenecks:
# analyze_plan
query_analyze_plan = (
table.search(query_embed)
.where("identifier > 0 AND identifier < 1000000")
.select(["chunk_index", "title", "identifier"])
.limit(100)
.analyze_plan()
)
// analyze_plan
const analyzePlan = await table
.search(queryEmbed)
.where("identifier > 0 AND identifier < 1000000")
.select(["chunk_index", "title", "identifier"])
.limit(100)
.analyzePlan();
Performance Metrics Analysis
ProjectionExec: expr=[chunk_index@4 as chunk_index, title@5 as title, identifier@1 as identifier, _distance@3 as _distance], metrics=[output_rows=100, elapsed_compute=1.424µs]
RemoteTake: columns="vector, identifier, _rowid, _distance, chunk_index, title", metrics=[output_rows=100, elapsed_compute=175.53097ms, output_batches=1, remote_takes=100]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=100, elapsed_compute=2.748µs]
GlobalLimitExec: skip=0, fetch=100, metrics=[output_rows=100, elapsed_compute=1.819µs]
FilterExec: _distance@3 IS NOT NULL, metrics=[output_rows=100, elapsed_compute=10.275µs]
SortExec: TopK(fetch=100), expr=[_distance@3 ASC NULLS LAST], preserve_partitioning=[false], metrics=[output_rows=100, elapsed_compute=39.259451ms, row_replacements=546]
KNNVectorDistance: metric=l2, metrics=[output_rows=1099508, elapsed_compute=56.783526ms, output_batches=1076]
FilterExec: identifier@1 > 0 AND identifier@1 < 1000000, metrics=[output_rows=1099508, elapsed_compute=17.136819ms]
LanceScan: uri=***, projection=[vector, identifier], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1200000, elapsed_compute=21.348178ms, bytes_read=1852931072, iops=78, requests=78]
1. Data Loading (LanceScan)
- Scanned 1,200,000 rows from the LanceDB table
- Read 1.86GB of data in 78 I/O operations
- Only loaded necessary columns (
vector
andidentifier
) - Unordered scan for parallel processing
2. Filtering & Search
- Applied prefilter condition (
identifier > 0 AND identifier < 1000000
) - Reduced dataset from 1.2M to 1,099,508 rows
- KNN search used L2 (Euclidean) distance metric
- Vector comparisons processed in 1076 batches
3. Results Processing
- KNN results sorted by distance (TopK with fetch=100)
- Null distances filtered out
- Batches coalesced to target size of 1024 rows
- Additional columns fetched for final results
- Remote take operation for 100 results
- Final projection of required columns
Key Observations
- Vector search is the primary bottleneck (1,099,508 vector comparisons)
- Significant I/O overhead (1.86GB data read)
- Full table scan due to lack of indices
- Substantial optimization potential through proper index implementation
Optimized Query Execution
After creating vector and scalar indices, the execution plan shows:
ProjectionExec: expr=[chunk_index@3 as chunk_index, title@4 as title, identifier@2 as identifier, _distance@0 as _distance]
RemoteTake: columns="_distance, _rowid, identifier, chunk_index, title"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=100
SortExec: TopK(fetch=100), expr=[_distance@0 ASC NULLS LAST], preserve_partitioning=[false]
ANNSubIndex: name=vector_idx, k=100, deltas=1
ANNIvfPartition: uuid=83916fd5-fc45-4977-bad9-1f0737539bb9, nprobes=20, deltas=1
ScalarIndexQuery: query=AND(identifier > 0,identifier < 1000000)
Optimized Plan Analysis
1. Scalar Index Query
ScalarIndexQuery: query=AND(identifier > 0,identifier < 1000000)
metrics=[
output_rows=2
index_comparisons=2,301,824
indices_loaded=2
output_batches=1
parts_loaded=562
elapsed_compute=86.979354ms
]
- Range filter using scalar index
- Only 2 index files and 562 scalar index parts loaded
- 2.3M index comparisons for matches
2. Vector Search
ANNSubIndex: name=vector_idx, k=100, deltas=1
metrics=[
output_rows=2,000
index_comparisons=25,893
indices_loaded=0
output_batches=20
parts_loaded=20
elapsed_compute=111.849043ms
]
- IVF index with 20 probes
- Only 20 index parts loaded
- 25,893 vector comparisons
- 2,000 matching vectors
3. Results Processing
SortExec: TopK(fetch=100), expr=[_distance@0 ASC NULLS LAST], preserve_partitioning=[false]
GlobalLimitExec: skip=0, fetch=100
CoalesceBatchesExec: target_batch_size=1024
- Sorts by distance
- Limits to top 100 results
- Batches into groups of 1024
4. Data Fetching
RemoteTake: columns="_distance, _rowid, identifier, chunk_index, title"
metrics=[output_rows=100, elapsed_compute=113.491859ms, output_batches=1, remote_takes=100]
- Single output batch
- One remote take per row
5. Final Projection
ProjectionExec: expr=[chunk_index@3 as chunk_index, title@4 as title, identifier@2 as identifier, _distance@0 as _distance]
- Returns specified columns: chunk_index, title, identifier, and distance
Performance Improvements
1. Initial Data Access
ScalarIndexQuery metrics:
- indices_loaded=2
- parts_loaded=562
- output_batches=1
- Before: Full table scan of 1.2M rows, 1.86GB data
- After: Only 2 indices and 562 scalar index parts loaded
- Benefit: Eliminated table scans for prefilter
2. Vector Search Efficiency
ANNSubIndex:
- index_comparisons=25,893
- indices_loaded=0
- parts_loaded=20
- output_batches=20
- Before: L2 calculations on 1,099,508 vectors
- After:
- 99.8% reduction in vector comparisons
- Decreased output batches from 1,076 to 20
3. Data Retrieval Optimization
RemoteTake:
- remote_takes=100
- output_batches=1
- RemoteTake operation remains consistent
Performance Optimization Guide
1. Index Implementation
When to Create Indices
- Columns used in WHERE clauses
- Vector columns for similarity searches
- Join columns used in
merge_insert
Index Type Selection
Data Type | Recommended Index | Use Case |
---|---|---|
Vector | IVF_PQ/IVF_HNSW_SQ | Approximate nearest neighbor search |
Scalar | B-Tree | Range queries and sorting |
Categorical | Bitmap | Multi-value filters and set operations |
List |
Label_list | Multi-label classification and filtering |
!!! info “Index Coverage Monitoring”
Use table.index_stats()
to monitor index coverage.
A well-optimized table should have num_unindexed_rows ~ 0
.
2. Query Plan Optimization
Common Patterns and Fixes
Plan Pattern | Optimization |
---|---|
LanceScan with high bytes_read or iops | Add missing index |
Use select() to limit returned columns |
|
Check whether the dataset has been compacted | |
Multiple sequential filters | Reorder filter conditions |
!!! note “Regular Performance Analysis”
Regularly analyze your query plans to identify and address performance bottlenecks.
The analyze_plan
output provides detailed metrics to guide optimization efforts.
3. Getting Started with Optimization
For vector search performance:
- Create ANN index on your vector column(s) as described in the index guide
- If you often filter by metadata, create scalar indices on those columns